Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

The practical application of graphene oxide (GO)/polymer composite membranes requires addressing the poor long-term stability caused by exfoliation of GO laminates from the substrate, solvent dissolution of the substrate and fouling by organic pollutants. This study describes the concurrent cross-linking of GO laminates, a polyimide substrate and their interface through a single filtration step with multifunctional triethylenetetramine (TETA). The new strategy features the following advantages: (1) the improved free volume and tunable charge characteristic of GO laminates lead to higher acetonitrile permeance with precise molecular sieving properties over state-of-art organic solvent nanofiltration (OSN) membranes; (2) the covalent bonding formed at the GO/polyimide interface and polyimide substrate endows the membrane with significantly enhanced stability in harsh environments; (3) the photocatalytic properties hold great potential for fouling reduction and dye decolorization.

Graphical abstract: One-step enhancement of solvent transport, stability and photocatalytic properties of graphene oxide/polyimide membranes with multifunctional cross-linkers

Page: ^ Top