Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 27th March 2019 from 11:00 AM to 1:00 PM (GMT).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 5, 2019
Previous Article Next Article

ITO-free carrier-selective contact for crystalline silicon solar cells

Author affiliations

Abstract

In this study, an indium tin oxide (ITO)-free carrier-selective contact (CSC) for crystalline silicon (c-Si) solar cells with a micro-grid metal electrode is reported. The ITO layer is crucial for collecting the carriers separated at the junction between CSC and n-Si because of the relatively low conductivity of CSC. However, previous research investigated the formation of ITO films via sputter deposition, which can lead to performance degradation of solar cells due to the parasitic absorption of the ITO layer and plasma damage at the CSC/Si junction during sputtering. Moreover, the use of ITO is hindered because of the rare indium metal. Herein, we investigate the carrier transport mechanism at the MoOx/n-Si junction to understand the reason for the poor performance of ITO-free devices. A majority of the carriers are limited because of a highly resistive carrier path, with a sheet resistance of 16 kΩ sq−1 during carrier transport, leading to the severe degradation of fill factor (FF) and short-circuit current (Jsc). To minimize the power loss during carrier transport, a micro-grid metal electrode that can effectively collect carriers separated at the MoOx/n-Si junction is applied. With this micro-grid electrode, the electrical losses of ITO-free solar cells can be minimized despite the highly resistive path of the MoOx/n-Si junction. Hence, the best device exhibits a power conversion efficiency of up to 17.0% without the ITO layer.

Graphical abstract: ITO-free carrier-selective contact for crystalline silicon solar cells

Back to tab navigation

Supplementary files

Publication details

The article was received on 22 Nov 2018, accepted on 02 Jan 2019 and first published on 04 Jan 2019


Article type: Paper
DOI: 10.1039/C8TA11220G
Citation: J. Mater. Chem. A, 2019,7, 2192-2199

  •   Request permissions

    ITO-free carrier-selective contact for crystalline silicon solar cells

    D. Choi, H. Yoon, K. Kim, H. Um and K. Seo, J. Mater. Chem. A, 2019, 7, 2192
    DOI: 10.1039/C8TA11220G

Search articles by author

Spotlight

Advertisements