Issue 14, 2019

Processing of high performance composite cathodes for protonic ceramic fuel cells by exsolution

Abstract

La0.5Ba0.5CoO3−δ–BaZrO3 (LB–BZ)-based composite materials were prepared by a modified Pechini sol–gel method combined with exsolution. Two different LB–BZ composites were prepared through two alternative thermal treatments of the precursor gel. A metastable single phase with a perovskite crystal structure was first obtained upon annealing the precursor in an inert atmosphere, and it was further transformed into a two-phase composite by in situ exsolution in air. Comparatively, direct calcination of the LB–BZ gel in air resulted in a two-phase composite with different microstructures and compositions of the two phases. The composite cathode formed by exsolution consisted of a matrix of BZ-phase with ∼45 nm grain size embedding ∼20 nm grains of LB-phase, while the composite cathode obtained by direct calcination consisted of a mixture of both phases with 50–60 nm grain size. Electrodes of symmetric half-cells were spray-coated on the BaZr0.9Y0.1O2.95 electrolyte to examine the electrochemical performance by impedance spectroscopy. The lowest area specific resistance (ASR) was obtained for the composite cathode produced by exsolution with an excellent ASR of 1.54 Ω cm2 at 600 °C and 18 Ω cm2 at 400 °C and an activation energy (Ea) of 0.60 eV in 3% moist synthetic air. This work demonstrates the potential of fabricating high performance nanocomposite cathodes with tailored chemical composition by a novel exsolution method.

Graphical abstract: Processing of high performance composite cathodes for protonic ceramic fuel cells by exsolution

Supplementary files

Article information

Article type
Paper
Submitted
14 Nov 2018
Accepted
07 Mar 2019
First published
11 Mar 2019

J. Mater. Chem. A, 2019,7, 8609-8619

Processing of high performance composite cathodes for protonic ceramic fuel cells by exsolution

L. Rioja-Monllor, C. Bernuy-Lopez, M. Fontaine, T. Grande and M. Einarsrud, J. Mater. Chem. A, 2019, 7, 8609 DOI: 10.1039/C8TA10950H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements