Jump to main content
Jump to site search

Issue 2, 2019
Previous Article Next Article

An indole-based aerogel for enhanced removal of heavy metals from water via the synergistic effects of complexation and cation–π interactions

Author affiliations

Abstract

A novel indole-based aerogel (4-HIFA) has been obtained by the condensation of 4-hydroxyindole and formaldehyde via sol–gel technology, which proceeds easily by acid catalysis in one pot. Taking advantage of the synergistic effects of the complexation and cation–π interactions of the hydroxyl and indole groups with heavy metals, the 4-HIFA exhibits enormous capacities for Ni2+ (∼240 mg g−1), Cu2+ (∼265 mg g−1), Cr3+ (∼92 mg g−1) and Zn2+ (∼125 mg g−1), a selectivity order of Ni2+ > Cu2+ > Cr3+ > Zn2+, and a very high distribution coefficient (Kd) of ∼105 mL g−1 which place it at the top of materials known for such removal. Furthermore, the adsorptions for all of the four ions reach equilibrium within ∼5 min. As an efficient, low-cost and renewable adsorbent, 4-HIFA is thus promising for use in the processing of large amounts of sewage.

Graphical abstract: An indole-based aerogel for enhanced removal of heavy metals from water via the synergistic effects of complexation and cation–π interactions

Back to tab navigation

Supplementary files

Article information


Submitted
29 Jul 2018
Accepted
02 Oct 2018
First published
12 Dec 2018

J. Mater. Chem. A, 2019,7, 531-539
Article type
Paper

An indole-based aerogel for enhanced removal of heavy metals from water via the synergistic effects of complexation and cation–π interactions

P. Yang, L. Yang, Y. Wang, L. Song, J. Yang and G. Chang, J. Mater. Chem. A, 2019, 7, 531
DOI: 10.1039/C8TA07326K

Social activity

Search articles by author

Spotlight

Advertisements