Jump to main content
Jump to site search

A blob model to parameterize polymer hole free volumes and solute diffusion


Solute diffusion in solid polymers has tremendous applications in packaging, reservoir, and biomedical technologies but remains poorly understood. Diffusion of non-entangled linear solutes with chemically identical patterns (blobs) deviates dramatically in polymers at solid-state (α≥1, Macromolecules2013, 46, 874) from their behaviors at molten state (α=1 , Macromolecules2007, 40, 3970). This work uses the scale invariance of the diffusivities, D, of linear probes D(N·Mblob+Manchor,T,Tg)=N-α(T,Tg)D(Mblob+Manchor,T,Tg) comprising N identical blobs of mass Mblob and possibly one different terminal pattern (anchor of mass Manchor) to evaluate the amounts of hole-free volume in seven polymers (aliphatic, semi-aromatic and aromatic) over a broad range of temperatures (-70 K≤T-Tg≤160 K). The new parameterization of the concept of hole-free volumes opens the application of the free-volume theory (FVT) developed by Vrentas and Duda to practically any polymer, regardless of the availability of free-volume parameters. The quality of the estimations was tested with various probes including n-alkanes, 1-alcohols, n-alkyl acetates, n-alkylbenzene. The effects of enthalpic and entropic effects of the blobs and the anchor were analyzed and quantified. Blind validation of the reformulated FVT was tested successfully by predicting from first principles the diffusivities of water and toluene in amorphous polyethylene terephthalate from 4°C to 180°C and in various other polymers. The new blob model opens the rationale design of additives with controlled diffusivities in thermoplastics.

Back to tab navigation

Supplementary files

Publication details

The article was received on 02 Aug 2019, accepted on 03 Oct 2019 and first published on 04 Oct 2019

Article type: Paper
DOI: 10.1039/C9SM01556F
Soft Matter, 2019, Accepted Manuscript

  •   Request permissions

    A blob model to parameterize polymer hole free volumes and solute diffusion

    Y. Zhu, F. Welle and O. Vitrac, Soft Matter, 2019, Accepted Manuscript , DOI: 10.1039/C9SM01556F

Search articles by author