Issue 33, 2019

Force transmission and the order parameter of shear thickening

Abstract

The origin of the abrupt shear thickening observed in some dense suspensions has been recently argued to be a transition from frictionless (lubricated) to frictional interactions between immersed particles. The Wyart–Cates rheological model, built on this scenario, introduced the concept of the fraction of frictional contacts f as the relevant order parameter for the shear thickening transition. Central to the model is the “equation-of-state” relating f to the applied stress σ, which is directly linked to the distribution of the normal components of non-hydrodynamic interparticle forces. Here, we develop a model for this force distribution, based on the so-called q-model, which we borrow from granular physics. This model explains the known f(σ) in the simple case of sphere contacts displaying only sliding friction, but also predicts strong deviation from this “usual” form when stronger kinds of constraints are applied on the relative motion. We verify these predictions in the case of contacts with rolling friction, in particular a broadening of the stress range over which shear thickening occurs. We finally discuss how a similar approach can be followed to predict f(σ) in systems with other variations from the canonical system of monodisperse spheres with sliding friction, in particular the case of large bidispersity.

Graphical abstract: Force transmission and the order parameter of shear thickening

Article information

Article type
Paper
Submitted
19 Jun 2019
Accepted
25 Jul 2019
First published
26 Jul 2019

Soft Matter, 2019,15, 6650-6659

Author version available

Force transmission and the order parameter of shear thickening

R. Mari and R. Seto, Soft Matter, 2019, 15, 6650 DOI: 10.1039/C9SM01223K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements