Issue 34, 2019

Equation of state of colloidal membranes

Abstract

In the presence of a non-adsorbing polymer, monodisperse rod-like colloids assemble into one-rod-length thick liquid-like monolayers, called colloidal membranes. The density of the rods within a colloidal membrane is determined by a balance between the osmotic pressure exerted by the enveloping polymer suspension and the repulsion between the colloidal rods. We developed a microfluidic device for continuously observing an isolated membrane while dynamically controlling the osmotic pressure of the polymer suspension. Using this technology we measured the membrane rod density over a range of osmotic pressures than is wider that what is accessible in equilibrium samples. With increasing density we observed a first-order phase transition, in which the in-plane membrane order transforms from a 2D fluid into a 2D solid. In the limit of low osmotic pressures, we measured the rate at which individual rods evaporate from the membrane. The developed microfluidic technique could have wide applicability for in situ investigation of various soft materials and how their properties depend on the solvent composition.

Graphical abstract: Equation of state of colloidal membranes

Article information

Article type
Paper
Submitted
25 May 2019
Accepted
26 Jul 2019
First published
29 Jul 2019

Soft Matter, 2019,15, 6791-6802

Author version available

Equation of state of colloidal membranes

A. J. Balchunas, R. A. Cabanas, M. J. Zakhary, T. Gibaud, S. Fraden, P. Sharma, M. F. Hagan and Z. Dogic, Soft Matter, 2019, 15, 6791 DOI: 10.1039/C9SM01054H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements