Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 26, 2019
Previous Article Next Article

Polymer nanocomposite capsules formed by droplet extraction: spontaneous stratification and tailored dissolution

Author affiliations

Abstract

We report the formation of polymeric and nanocomposite capsules via droplet solvent extraction, focusing on the interplay between solvent exchange and removal, demixing and directional solidification kinetics. We investigate a model system of sodium poly(styrene sulfonate), NaPSS and silica nanoparticles in aqueous solution, whose phase behaviour is experimentally measured, and examine a series of selective extraction solvents (toluene, butyl acetate, ethyl acetate and methyl ethyl ketone), ranging from 0.04 to 11% v/v water solubility. Tuning the rate of solvent exchange is shown to provide an effective means of decoupling demixing and solidification timescales, and thereby tunes the internal microstructure of the capsule, including hollow, microporous, core–shell, and bicontinuous morphologies. In turn, these determine the capsule dissolution mechanism and kinetics, ranging from single to pulsed release profiles of nanoparticle clusters (at intermediate solubilities), to minimal dissolution (at either extremes). These findings provide facile design and assembly strategies for functional capsules with time-varying release profiles.

Graphical abstract: Polymer nanocomposite capsules formed by droplet extraction: spontaneous stratification and tailored dissolution

Back to tab navigation

Supplementary files

Article information


Submitted
08 Apr 2019
Accepted
04 Jun 2019
First published
04 Jun 2019

Soft Matter, 2019,15, 5287-5295
Article type
Paper

Polymer nanocomposite capsules formed by droplet extraction: spontaneous stratification and tailored dissolution

C. E. Udoh, V. Garbin and J. T. Cabral, Soft Matter, 2019, 15, 5287
DOI: 10.1039/C9SM00708C

Social activity

Search articles by author

Spotlight

Advertisements