Issue 35, 2019

Distribution of active forces in the cell cortex

Abstract

In this work, we study in detail the distribution of stochastic forces generated by the molecular motors activity, in the actin cortex of pre-muscular cells. By combining active and passive rheology experiments, performed on the same micro-bead bound to the actin network through membrane adhesive receptors, we measure the auto-correlation function Cff(τ) of the average force pulling on the bead. As for any out-of-equilibrium system, the force distribution differs from the thermodynamical equilibrium one, especially at long time scale τ ≳ 1 s where the bead motion becomes partially directed. Thus the fluctuation–dissipation theorem does not apply and one can measure the distance from equilibrium through its violation. We investigate the influence of different parameters on the force distribution, focusing particularly on the role of ligand density: a detailed study shows how the amplitude of active forces increases when the bead is more tightly attached to the cortex. We introduce and study a model, which takes into account the number of bonds between the bead and the cytoskeleton, as well as the viscoelastic properties of the medium. This model faithfully accounts for the experimental observations. Also, it is shown that the amplitude of active forces increases with temperature. Finally, our data confirm that ATP depletion in the cell, or partial inhibition of the actomyosin activity, leads to a decrease of the amplitude of the force distribution. Altogether, we propose a consistent and quantitative description for the motion of a micrometric probe interacting with the actin network, and for the amplitude of the stochastic forces generated by molecular motors in the cortex surrounding this probe.

Graphical abstract: Distribution of active forces in the cell cortex

Article information

Article type
Paper
Submitted
01 Mar 2019
Accepted
01 Aug 2019
First published
07 Aug 2019

Soft Matter, 2019,15, 6952-6966

Distribution of active forces in the cell cortex

P. Bohec, J. Tailleur, F. van Wijland, A. Richert and F. Gallet, Soft Matter, 2019, 15, 6952 DOI: 10.1039/C9SM00441F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements