Jump to main content
Jump to site search

Issue 16, 2019
Previous Article Next Article

Designing bijels formed by solvent transfer induced phase separation with functional nanoparticles

Author affiliations

Abstract

Bicontinuous interfacially jammed emulsion gels (bijels) formed via solvent transfer induced phase separation (STrIPS) are new soft materials with potential applications in separations, healthcare, or catalysis. To facilitate their applications, means to fabricate STrIPS bijels with nanoparticles of various surface chemistries are needed. Here, we investigate the formation of STrIPS bijels with nanoparticles of different wettabilities, ranging from partially hydrophobic to extremely hydrophilic. To this end, the surface wettability of silica nanoparticles is tailored by functionalization with ligands bearing either hydrophobic or hydrophilic terminal groups. We show that partially hydrophobic particles with acrylate groups can impart short-term stability to STrIPS bijels on their own. However, to enable long-term stability, the use of cationic surfactants is needed. Partially hydrophobic particles require short chain surfactants for morphological stability while glycerol-functionalized hydrophilic particles require double chain cationic surfactants. Variation of the surfactant concentration results in various STrIPS bijel morphologies with controllable domain sizes. Last, we show that functional groups on the nanoparticles facilitate interfacial cross-linking for the purposes of reinforcing STrIPS bijels. Our research lays the foundation for the use of a wide variety of solid particles, irrespective of their surface wettabilities, to fabricate bijels with potential applications in Pickering interfacial catalysis and as cross-flow microreactors.

Graphical abstract: Designing bijels formed by solvent transfer induced phase separation with functional nanoparticles

Back to tab navigation

Supplementary files

Publication details

The article was received on 10 Feb 2019, accepted on 24 Mar 2019 and first published on 25 Mar 2019


Article type: Paper
DOI: 10.1039/C9SM00289H
Citation: Soft Matter, 2019,15, 3379-3388

  •   Request permissions

    Designing bijels formed by solvent transfer induced phase separation with functional nanoparticles

    S. Boakye-Ansah, M. S. Schwenger and M. F. Haase, Soft Matter, 2019, 15, 3379
    DOI: 10.1039/C9SM00289H

Search articles by author

Spotlight

Advertisements