Behavior of active filaments near solid-boundary under linear shear flow
Abstract
The steady-state behavior of a dilute suspension of self-propelled filaments confined between planar walls subjected to Couette-flow is reported herein. The effect of hydrodynamics has been taken into account using a mesoscale simulation approach. We present a detailed analysis of positional and angular probability distributions of filaments with varying propulsive force and shear-flow. The distribution of the centre-of-mass of the filament shows adsorption near the surfaces, which diminishes with the flow. The excess density of filaments decreases with Weissenberg number as Wi−β with an exponent β ≈ 0.8, in the intermediate shear range (1 < Wi < 30). The angular orientational moment also decreases near the wall as Wi−δ with δ ≈ 1/5; the variation in orientational moment near the wall is relatively slower than the bulk. It shows a strong dependence on the propulsive force near the wall, with variation on force as Pe−1/3 for large Pe ≥ 1. The active filament shows orientational preference with flow near the surfaces, which splits into upstream and downstream swimming. The population splitting from a unimodal (propulsive force dominated regime) to bimodal phase (shear dominated regime) is identified in the parameter space of propulsive force and shear flow.