Enantioselective cytotoxicity of chiral polymer vesicles with linear and hyperbranched structures†
Abstract
Herein, we study the enantioselective cytotoxicity of vesicles self-assembled by optically active linear polymers (LNPs) and hyperbranched polymers (HBPs). Compared to HBP vesicles, LNP vesicles exhibit properties such as a higher surface charge density and more violent interaction with simulated biomembranes which results in larger cytotoxicity against HeLa cells. Specifically, racemic-LNP vesicles exhibit the largest cytotoxicity of all. More interestingly, there is no significant enantioselective dependence of HBP vesicles on the abovementioned properties. Overall, we proved that the cytotoxicity of vesicles is deeply related to chirality and topological-structures. This research is of great fundamental value for the design of novel bio-interface materials.