Issue 9, 2019

Torque-induced reorientation in active fibre-reinforced materials

Abstract

We introduce a continuum model for a fibre reinforced material in which the reference orientation of the fibre may evolve with time, under the influence of external stimuli. The model is formulated in the framework of large strain hyperelasticity and the kinematics of the continuum is described by both a position vector and by a remodelling tensor which, in the present context, is an orthogonal tensor representing the fibre reorientation process. By imposing suitable thermodynamical restrictions on the constitutive equation, we obtain an evolution equation of the remodelling tensor governed by the Eshelby torque, whose stationary solutions are studied in absence of any external source terms. It is shown that the fibres reorient themselves in a configuration that minimises the elastic energy and get aligned along a direction that may or may not be of principal strain. The explicit analysis of the Hessian of the strain energy density allows us to discriminate among the stationary solutions, which ones are stable. Examples are given for passive reorientation processes driven by applied strains or external boundary tractions. Applications of the proposed theory to biological tissues, nematic or magneto-electro active elastomers are foreseen.

Graphical abstract: Torque-induced reorientation in active fibre-reinforced materials

Article information

Article type
Paper
Submitted
16 Nov 2018
Accepted
29 Jan 2019
First published
01 Feb 2019

Soft Matter, 2019,15, 2081-2091

Torque-induced reorientation in active fibre-reinforced materials

J. Ciambella and P. Nardinocchi, Soft Matter, 2019, 15, 2081 DOI: 10.1039/C8SM02346H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements