Issue 10, 2019

DEM simulation of the local ordering of tetrahedral granular matter

Abstract

The formation and growth of local order clusters in a tetrahedral granular assembly driven by 3D mechanical vibration were captured in DEM (discrete element method) dynamic simulation using a multi-sphere model. Two important kinds of clusters, dimer and wagon wheel structures, were observed based on which the growth behavior and mechanism of each local cluster with different orientations/structures were investigated. The results show that during vibration, dimer clusters are formed first and then most of them grow into linear trimers and tetramers. Wagon wheel clusters are also frequently observed that grow into hexamers and, further, octamer and nonamer local clusters. Coordination number (CN) evolution indicates that the decrease of local mean CN can be regarded as the signal for the formation of local clusters in the tetrahedral particle packing system. Nematic order metric analysis shows that although the two basic structures (dimer and wagon wheel structures) grow into complex local clusters during packing densification, these local clusters are randomly distributed in the tetrahedral particle packing system. Stress analysis indicates that the dimer-based local clusters are mostly formed in the compaction state of the tetrahedral particle packing system during the vibrated packing densification process. In comparison, the wagon wheel-based local clusters need much stronger interaction forces from tetrahedral particles during vibrated packing densification.

Graphical abstract: DEM simulation of the local ordering of tetrahedral granular matter

Article information

Article type
Paper
Submitted
24 Oct 2018
Accepted
06 Feb 2019
First published
12 Feb 2019

Soft Matter, 2019,15, 2260-2268

DEM simulation of the local ordering of tetrahedral granular matter

B. Zhao, X. An, H. Zhao, L. Shen, X. Sun and Z. Zhou, Soft Matter, 2019, 15, 2260 DOI: 10.1039/C8SM02166J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements