Issue 6, 2019

Singular dynamics in the failure of soft adhesive contacts

Abstract

We characterize the mechanical recovery of compliant silicone gels following adhesive contact failure. We establish broad, stable adhesive contacts between rigid microspheres and soft gels, then stretch the gels to large deformations by pulling quasi-statically on the contact. Eventually, the adhesive contact begins to fail, and ultimately slides to a final contact point on the bottom of the sphere. Immediately after detachment, the gel recoils quickly with a self-similar surface profile that evolves as a power law in time, suggesting that the adhesive detachment point is singular. The singular dynamics we observe are consistent with a relaxation process driven by surface stress and slowed by viscous flow through the porous, elastic network of the gel. Our results emphasize the importance of accounting for both the liquid and solid phases of gels in understanding their mechanics, especially under extreme deformation.

Graphical abstract: Singular dynamics in the failure of soft adhesive contacts

Supplementary files

Article information

Article type
Paper
Submitted
10 Oct 2018
Accepted
26 Nov 2018
First published
26 Nov 2018

Soft Matter, 2019,15, 1327-1334

Singular dynamics in the failure of soft adhesive contacts

J. D. Berman, M. Randeria, R. W. Style, Q. Xu, J. R. Nichols, A. J. Duncan, M. Loewenberg, E. R. Dufresne and K. E. Jensen, Soft Matter, 2019, 15, 1327 DOI: 10.1039/C8SM02075B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements