Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 7, 2019
Previous Article Next Article

Active matter alters the growth dynamics of coffee rings

Author affiliations

Abstract

How particles are deposited at the edge of evaporating droplets, i.e. the coffee ring effect, plays a crucial role in phenomena as diverse as thin-film deposition, self-assembly, and biofilm formation. Recently, microorganisms have been shown to passively exploit and alter these deposition dynamics to increase their survival chances under harshening conditions. Here, we show that, as the droplet evaporation rate slows down, bacterial mobility starts playing a major role in determining the growth dynamics of the edge of drying droplets. Such motility-induced dynamics can influence several biophysical phenomena, from the formation of biofilms to the spreading of pathogens in humid environments and on surfaces subject to periodic drying. Analogous dynamics in other active matter systems can be exploited for technological applications in printing, coating, and self-assembly, where the standard coffee-ring effect is often a nuisance.

Graphical abstract: Active matter alters the growth dynamics of coffee rings

Back to tab navigation

Supplementary files

Article information


Submitted
02 Jul 2018
Accepted
04 Dec 2018
First published
20 Dec 2018

Soft Matter, 2019,15, 1488-1496
Article type
Paper

Active matter alters the growth dynamics of coffee rings

T. Andac, P. Weigmann, S. K. P. Velu, E. Pinçe, G. Volpe, G. Volpe and A. Callegari, Soft Matter, 2019, 15, 1488
DOI: 10.1039/C8SM01350K

Social activity

Search articles by author

Spotlight

Advertisements