Jump to main content
Jump to site search


Strategies for Deposition of LaFeO3 Photocathodes: Improving Photocurrent with a Polymer Template

Abstract

Renewable and sustainable alternatives to fossil fuels are needed to limit the impact of global warming. Using metal oxide semiconductors as photoelectrodes within photoelectrochemical cell devices, in which solar energy can be stored and ultimately used for electricity generation, is one such alternative. LaFeO3 (LFO) has been shown to be an active photocathode on illumination of visible light but is restricted by low surface area and relatively low photocurrents achieved. The work herein utilizes a spin coating deposition method with a solution of nitrate precursors combined with non-ionic polymeric surfactant (Triton X-100). This allowed for the formation of a uniform porous LFO film of high coverage on a fluorine-doped tin oxide coated substrate, through directing growth and preventing particle aggregation during film fabrication. These porous LFO films achieved an enhanced photocurrent of -161±6 µA cm-2 at +0.43 VRHE, in addition to a remarkable high onset potential of +1.4 VRHE for cathodic photocurrent. It was additionally shown that this attained film quality and activity was superior to other film fabrication methods such as doctor blading and spray pyrolysis. With this polymer templating method for LFO films, not only are higher photocurrents achieved but there are also added benefits such as better charge separation, higher efficiencies, higher specific electrochemically-active surface area and improved stability.

Back to tab navigation

Supplementary files

Publication details

The article was accepted on 23 Nov 2019 and first published on 26 Nov 2019


Article type: Paper
DOI: 10.1039/C9SE01103J
Sustainable Energy Fuels, 2019, Accepted Manuscript
  • Open access: Creative Commons BY license
  •   Request permissions

    Strategies for Deposition of LaFeO3 Photocathodes: Improving Photocurrent with a Polymer Template

    E. Freeman, S. Kumar, V. Celorrio, M. S. Park, J. H. Kim, D. J. Fermin and S. Eslava, Sustainable Energy Fuels, 2019, Accepted Manuscript , DOI: 10.1039/C9SE01103J

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements