Jump to main content
Jump to site search


Analysis of the effect of catalyst layer thickness on performance and durability of platinum group metal-free catalysts for polymer electrolyte membrane fuel cells

Abstract

Development of platinum group metal-free catalysts for polymer electrolyte membrane fuel cells is a critical target to obtain a high market share of fuel cell electric vehicles in the long term. Recent works have proved the feasibility of new materials with high catalytic activity towards oxygen reduction reaction, which are based on Earth-abundant and low-cost elements. The stability of these materials is now the major concern at the current state of the art: in the initial hundreds of hours of operation, in fact, a significant loss of catalyst activity is observed. In the present work, the analysis of performance and degradation of cathode catalyst layers based on metal-nitrogen-carbon materials is analyzed for 150 hours. The effects of catalyst loading, ionomer content are being analyzed. Electrochemical impedance spectroscopy is adopted to gain insight into the ageing and interpreted by means of a 1D physics-based model. A regime is reported to occur, in which ion, electron and oxygen transport limitations interplay and the effect of each phenomenon is distinguished on the impedance spectra and polarization curves. Degradation is shown to mainly affect the catalyst activity or the density of active sites, but also a loss of electric and ionic conductivity is observed.

Back to tab navigation

Supplementary files

Publication details

The article was received on 21 Apr 2019, accepted on 25 Sep 2019 and first published on 02 Oct 2019


Article type: Paper
DOI: 10.1039/C9SE00252A
Sustainable Energy Fuels, 2019, Accepted Manuscript

  •   Request permissions

    Analysis of the effect of catalyst layer thickness on performance and durability of platinum group metal-free catalysts for polymer electrolyte membrane fuel cells

    A. Baricci, A. Bisello, A. Serov, M. Odgaard, P. Atanassov and A. Casalegno, Sustainable Energy Fuels, 2019, Accepted Manuscript , DOI: 10.1039/C9SE00252A

Search articles by author

Spotlight

Advertisements