Issue 5, 2019

The energetic implications of introducing lithium-ion batteries into distributed photovoltaic systems

Abstract

Batteries for stationary applications can prove to be crucial for enabling high penetration of solar energy, but production and use of batteries comes with an energetic cost. This study quantifies how adding a lithium-ion (Li-ion) battery affects the energetic performance of a typical residential photovoltaic (PV) system under a wide range of climatic conditions. If all generated power is either self-consumed or made available via an existing distribution grid, the PV system will have an energy return on investment (EROI) of between 14 (Alaska) and 27 (Arizona). While adding a 12 kW h Li-ion battery increases self-consumption considerably, this has a negative effect of decreasing the EROI by more than 20%. In a situation where all excess power generation is curtailed, the EROI can be as low as 7 (Alaska and Washington), although it can also be as high as 15 (Florida). Introducing a battery increases the EROI but it is still considerably lower than in cases where excess power generation is added to the grid. Doubling the battery size increases the average self-consumption marginally, but further decreases the EROI of the system because the extra energy invested to build the additional battery is used inefficiently. The results show that installing PV systems in locations with good solar resources and a grid that can accept excess production is desirable for maximizing the net energy return from distributed PV systems. Batteries have a benefit when excess electricity generation cannot be fed into the grid. Oversizing batteries has the effect of significantly reducing the EROI of the PV system.

Graphical abstract: The energetic implications of introducing lithium-ion batteries into distributed photovoltaic systems

Article information

Article type
Paper
Submitted
28 Feb 2019
Accepted
15 Mar 2019
First published
18 Mar 2019
This article is Open Access
Creative Commons BY-NC license

Sustainable Energy Fuels, 2019,3, 1182-1190

The energetic implications of introducing lithium-ion batteries into distributed photovoltaic systems

S. Davidsson Kurland and S. M. Benson, Sustainable Energy Fuels, 2019, 3, 1182 DOI: 10.1039/C9SE00127A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements