Issue 5, 2019

Innovative design of microencapsulated phase change materials for thermal energy storage and versatile applications: a review

Abstract

As a class of thermal energy-storage materials, phase change materials (PCMs) play an important role in sustainable development of economy and society with a rapid increase in energy demand. Microencapsulation of solid–liquid PCMs has been recognized as a vital technology to protect them from leakage and running off and to give them a shape stability in the liquid state to offer the ease of handling and thus received tremendous attention from fundamental studies to industrial development in recent decades. Aiming to provide the most complete and reliable source of information on recent progress and current development in microencapsulated PCMs, this review focuses on methodologies and technologies for the encapsulation of PCMs with a variety of wall materials from traditional organic polymers to novel inorganic materials to pursue high encapsulation efficiency, excellent thermal energy-storage performance and long-term operation durability. We attempt to clearly summarize the selection of core and wall materials, synthetic methods, formation mechanisms and characteristic performance of microencapsulated PCMs to help scientists better understand their design principles and synthetic mechanisms. This review also highlights the diverse design of bi- and multi-functional PCM-based microcapsules by fabricating various functional shells in a multilayered or hierarchical structure to provide a great potential to meet the growing demand for versatile applications. We also provide insights on the future research and development direction of microencapsulated PCMs with multifunctional applications in energy efficiency, sustainable processes, high-tech energy management and specific physicochemical effectiveness.

Graphical abstract: Innovative design of microencapsulated phase change materials for thermal energy storage and versatile applications: a review

Article information

Article type
Review Article
Submitted
14 Jan 2019
Accepted
11 Mar 2019
First published
11 Mar 2019

Sustainable Energy Fuels, 2019,3, 1091-1149

Innovative design of microencapsulated phase change materials for thermal energy storage and versatile applications: a review

H. Liu, X. Wang and D. Wu, Sustainable Energy Fuels, 2019, 3, 1091 DOI: 10.1039/C9SE00019D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements