Jump to main content
Jump to site search

Issue 8, 2019
Previous Article Next Article

ZnO-nitrogen doped carbon derived from a zeolitic imidazolate framework as an efficient counter electrode in dye-sensitized solar cells

Author affiliations

Abstract

By direct carbonization of ZIF-8 nanopowder under an inert atmosphere, ZnO-nitrogen doped carbon (ZnO-NC) materials have been prepared and added at different content values to polystyrenesulfonate-doped poly(3,4-ethylenedioxythiophene) (PEDOT:PSS) and employed as an efficient catalyst in dye-sensitized solar cells (DSSCs). The electrochemical analysis confirms that the prepared counter electrodes display catalytic activity higher than those of PEDOT:PSS and Pt CEs for I3/I and [Co(bpy)3]2+/3+ redox mediators. The photovoltaic conversion efficiency of the assembled DSSC with the 7% ZnO-NC/PEDOT:PSS catalyst and an I3/I based electrolyte is 8.05%. By increasing the thickness of the prepared counter electrode, the electrocatalytic activity is greatly enhanced and the total performance reaches 9.16%, which is 21.16% greater than that of the Pt-based cell (7.56%). Furthermore, ZnO-NC/PEDOT:PSS CEs are also confirmed to exhibit outstanding catalytic activity toward the [Co(bpy)3]2+/3+ redox couple. The resultant conversion efficiency of the assembled DSSC with a 7% ZnO-NC/PEDOT:PSS CE is 8.12%, which is greater than that of the Pt-based cell (7.49%).

Graphical abstract: ZnO-nitrogen doped carbon derived from a zeolitic imidazolate framework as an efficient counter electrode in dye-sensitized solar cells

Back to tab navigation

Supplementary files

Article information


Submitted
04 Dec 2018
Accepted
15 Feb 2019
First published
18 Feb 2019

Sustainable Energy Fuels, 2019,3, 1976-1987
Article type
Paper

ZnO-nitrogen doped carbon derived from a zeolitic imidazolate framework as an efficient counter electrode in dye-sensitized solar cells

A. S. A. Ahmed, W. Xiang, I. S. Amiinu, Z. Li, R. Yu and X. Zhao, Sustainable Energy Fuels, 2019, 3, 1976
DOI: 10.1039/C8SE00594J

Social activity

Search articles by author

Spotlight

Advertisements