Issue 2, 2019

Ethanolic gasoline, a lignocellulosic advanced biofuel


In line with society's growing need for a more sustainable fuel economy, various biofuels and alternative fuel formulations are being proposed. In this work, the ignition quality of a novel tricomponent advanced biofuel is examined. Ethyl levulinate, diethyl ether and ethanol (EL/DEE/EtOH) result from the acid hydrolysis of lignocellulosic biomass in ethanol. In this paper, derived cetane numbers are established for a wide variety of blend fractions, using Ignition Quality Tester measurements. EL/DEE/EtOH mixtures of ignition quality equivalent to market diesel and gasoline are identified. One mixture of Motor Octane Number (MON) 88.3 and Research Octane Number (RON) 95 is selected for detailed analysis in comparison to a FACE (Fuels for Advanced Combustion Engines) gasoline, as a representative of petroleum-derived gasoline, with a similar MON of 88.8 and RON of 94.4. Ignition delay times for the EL/DEE/EtOH gasoline fuel are measured using a rapid compression machine at equivalence ratios of 0.5 and 1.0, at 20 and 40 bar over a temperature range of 600–900 K. The data shows that at temperatures >800 K, the EL/DEE/EtOH fuel behaves quite similar to the petroleum derived gasoline, FACE-F. However, the tri-component biofuel shows a dramatically truncated extent of ignition reactivity at lower temperatures, with a total absence of low-temperature chemistry or negative temperature coefficient (NTC) region; in this respect this biofuel blend is very different to conventional gasoline. To understand this differing behaviour, a detailed chemical kinetic model is developed. Analysis of this model shows that ignition of the EL/DEE/EtOH blend is inhibited by the dominance of alkyl radical elimination pathways, which leads to a heightened rate of production of HO2 radicals. At high temperatures, while both fuels maintain a similar ignition delay time, the sensitivity analysis and the radical pool population shows that a different combustion mechanism is occurring for the EL/DEE/EtOH fuel, where ethyl and methyl radicals play a much more prominent role in the ignition process.

Graphical abstract: Ethanolic gasoline, a lignocellulosic advanced biofuel

Associated articles

Supplementary files

Article information

Article type
25 Jul 2018
08 Oct 2018
First published
16 Oct 2018

Sustainable Energy Fuels, 2019,3, 409-421

Ethanolic gasoline, a lignocellulosic advanced biofuel

M. S. Howard, G. Issayev, N. Naser, S. M. Sarathy, A. Farooq and S. Dooley, Sustainable Energy Fuels, 2019, 3, 409 DOI: 10.1039/C8SE00378E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity