Jump to main content
Jump to site search


Development of a hydrolysis-based small-molecule hydrogen selenide (H2Se) donor

Author affiliations

Abstract

Selenium is essential to human physiology and has recently shown potential in the treatment of common pathophysiological conditions ranging from arsenic poisoning to cancer. Although the precise metabolic and chemical pathways of selenium incorporation into biomolecules remain somewhat unclear, many such pathways proceed through hydrogen selenide (H2Se/HSe) formation. Despite this importance, well-characterized chemistry that enables H2Se release under controlled conditions remains lacking. Motivated by this need, we report here the development of a hydrolysis-based H2Se donor (TDN1042). Utilizing 31P and 77Se NMR experiments, we demonstrate the pH dependence of H2Se release and characterize observed reaction intermediates during the hydrolysis mechanism. Finally, we confirm H2Se release using electrophilic trapping reagents, which not only demonstrates the fidelity of this donor platform but also provides an efficient method for investigating future H2Se donor motifs. Taken together, this work provides an early example of an H2Se donor that functions through a well-defined and characterized mechanism.

Graphical abstract: Development of a hydrolysis-based small-molecule hydrogen selenide (H2Se) donor

Back to tab navigation

Supplementary files

Publication details

The article was received on 12 Sep 2019, accepted on 11 Oct 2019 and first published on 11 Oct 2019


Article type: Edge Article
DOI: 10.1039/C9SC04616J
Chem. Sci., 2019, Advance Article
  • Open access: Creative Commons BY-NC license
    All publication charges for this article have been paid for by the Royal Society of Chemistry

  •   Request permissions

    Development of a hydrolysis-based small-molecule hydrogen selenide (H2Se) donor

    T. D. Newton and M. D. Pluth, Chem. Sci., 2019, Advance Article , DOI: 10.1039/C9SC04616J

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements