Jump to main content
Jump to site search


Understanding the Structure and Dynamics of Hydrogenases by Ultrafast and Two‑Dimensional Infrared Spectroscopy

Abstract

Hydrogenases are valuable model enzymes for sustainable energy conversion approaches using H2, but rational utilization of these base-metal biocatalysts requires a detailed understanding of the structure and dynamics of their complex active sites. The intrinsic CO and CN ligands of these metalloenzymes represent ideal chromophores for infrared (IR) spectroscopy, but structural and dynamic insight from conventional IR absorption experiments is limited. Here, we apply ultrafast and two-dimensional (2D) IR spectroscopic techniques, for the first time, to study hydrogenases in detail. Using an O2-tolerant [NiFe] hydrogenase as a model system, we show that IR pump-probe spectroscopy can explore catalytically relevant ligand bonding by accessing high-lying vibrational states. This ultrafast technique also shows that the protein matrix is influential in vibrational relaxation, which may be relevant for energy dissipation from the active site during fast reaction steps. Further insights into the relevance of the active site environment are provided by 2D-IR spectroscopy, which reveals equilibrium dynamics and structural constraints imposed on the H2-accepting intermediate of [NiFe] hydrogenases. Both techniques offer new strategies for uniquely identifying redox-structural states in complex catalytic mixtures via vibrational quantum beats and 2D-IR off-diagonal peaks. Together, these findings considerably expand the scope of IR spectroscopy in hydrogenase research, and new perspectives for the characterization of these enzymes and other (bio‑)organometallic targets are presented.

Back to tab navigation

Supplementary files

Publication details

The article was received on 11 Jun 2019, accepted on 05 Aug 2019 and first published on 05 Aug 2019


Article type: Edge Article
DOI: 10.1039/C9SC02851J
Chem. Sci., 2019, Accepted Manuscript
  • Open access: Creative Commons BY license
    All publication charges for this article have been paid for by the Royal Society of Chemistry

  •   Request permissions

    Understanding the Structure and Dynamics of Hydrogenases by Ultrafast and Two‑Dimensional Infrared Spectroscopy

    M. Horch, J. Schoknecht, S. L. D. Wrathall, G. M. Greetham, O. Lenz and N. Hunt, Chem. Sci., 2019, Accepted Manuscript , DOI: 10.1039/C9SC02851J

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements