Jump to main content
Jump to site search


Fluoro-electrochemical microscopy reveals group specific differential susceptibility of phytoplankton towards oxidative damage

Author affiliations

Abstract

In the vicinity of an electrode creating a highly oxidising environment the fluorescence – arising from the presence of chlorophyll-a – of single cellular phytoplankton becomes inhibited. Even for phytoplankton that are very comparable in size (ca. 2–20 μm) the rate of this (electro)chemically induced fluorescence inhibition differs significantly between phytoplankton species; the fluorescence signal of the freshwater algae Stichococcus bacillaris turns off ∼70 times faster than that of the marine coccolithophore Emiliana huxleyi. The varying behaviour reflects the differing susceptibility of these globally important phytoplankton species towards extreme levels of radical induced oxidative stress, indicating the physical and chemical properties of the plankton cell wall and membrane are very different between species, and are important in determining their susceptibility. These results have potential implications for the analytical detection and characterisation of phytoplankton cells in the natural environment.

Graphical abstract: Fluoro-electrochemical microscopy reveals group specific differential susceptibility of phytoplankton towards oxidative damage

Back to tab navigation

Supplementary files

Publication details

The article was received on 03 Jun 2019, accepted on 11 Jul 2019 and first published on 16 Jul 2019


Article type: Edge Article
DOI: 10.1039/C9SC02699A
Chem. Sci., 2019, Advance Article
  • Open access: Creative Commons BY-NC license
    All publication charges for this article have been paid for by the Royal Society of Chemistry

  •   Request permissions

    Fluoro-electrochemical microscopy reveals group specific differential susceptibility of phytoplankton towards oxidative damage

    M. Yang, C. Batchelor-McAuley, L. Chen, Y. Guo, Q. Zhang, R. E. M. Rickaby, H. A. Bouman and R. G. Compton, Chem. Sci., 2019, Advance Article , DOI: 10.1039/C9SC02699A

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements