Jump to main content
Jump to site search


Mechanochromism and optical remodeling of multi-network elastomers containing anthracene dimers

Author affiliations

Abstract

Multi-network elastomers are both stiff and tough by virtue of containing a pre-stretched stiff network that can rupture and dissipate energy under load. However, the rupture of this sacrificial network in all described covalent multi-network elastomers is irreversible. Herein, we describe the first example of multi-network elastomers with a reformable sacrificial network containing mechanochemically sensitive anthracene-dimer cross-links. These cross-links also make our elastomers mechanochromic, with coloration that is both persistent and reversible, because the fluorogenic moiety (anthracene dimer) is regenerated upon irradiation of the material. In proof-of-concept experiments we demonstrate the utility of incorporating anthracene dimers in the backbone of the sacrificial network for monitoring mechanochemical remodeling of multi-network elastomers under cycling mechanical load. Stretching or compressing these elastomers makes them fluorescent and irradiating them eliminates the fluorescence by regenerating anthracene dimers. Reformable mechanochromic cross-links, exemplified by anthracene dimers, hold potential for enabling detailed studies of the molecular origin of the unique mechanical properties of multi-network elastomers.

Graphical abstract: Mechanochromism and optical remodeling of multi-network elastomers containing anthracene dimers

Back to tab navigation

Supplementary files

Publication details

The article was received on 26 May 2019, accepted on 26 Jul 2019 and first published on 26 Jul 2019


Article type: Edge Article
DOI: 10.1039/C9SC02580D
Chem. Sci., 2019, Advance Article
  • Open access: Creative Commons BY license
    All publication charges for this article have been paid for by the Royal Society of Chemistry

  •   Request permissions

    Mechanochromism and optical remodeling of multi-network elastomers containing anthracene dimers

    H. Zhang, D. Zeng, Y. Pan, Y. Chen, Y. Ruan, Y. Xu, R. Boulatov, C. Creton and W. Weng, Chem. Sci., 2019, Advance Article , DOI: 10.1039/C9SC02580D

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements