Issue 26, 2019

Self-assembly of two robust 3D supramolecular organic frameworks from a geometrically non-planar molecule for high gas selectivity performance

Abstract

The synthesis of highly porous frameworks has received continuous research interest, but achieving the ability to target stable and selective materials remains challenging. Herein, by utilizing a ‘direction-oriented’ strategy and modulating reaction conditions, two novel 3D porous supramolecular organic framework (SOF) materials (JLU-SOF2 and JLU-SOF3, as isomers) are assembled from a non-planar building block (TMBTI = 2,4,6-trimethyl benzene-1,3,5-triyl-isophthalic acid) and they display permanent porosity, high thermal stability, and good recyclability. It is worth mentioning that the CO2 uptake values of JLU-SOF2 and JLU-SOF3 rank among the highest values for SOF-based materials under ambient conditions. Furthermore, these two materials exhibit preferential adsorption of CO2 over N2 and CH4, and can effectively separate the mixtures of light hydrocarbons. These studies indicate the possible application of JLU-SOF2 and JLU-SOF3 in trapping greenhouse gases and upgrading natural gas. In addition, this synthetic strategy introduces an effective method for developing remarkable 3D SOFs among other framework materials.

Graphical abstract: Self-assembly of two robust 3D supramolecular organic frameworks from a geometrically non-planar molecule for high gas selectivity performance

Supplementary files

Article information

Article type
Edge Article
Submitted
18 Jan 2019
Accepted
27 May 2019
First published
29 May 2019
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2019,10, 6565-6571

Self-assembly of two robust 3D supramolecular organic frameworks from a geometrically non-planar molecule for high gas selectivity performance

Y. Zhou, L. Kan, J. F. Eubank, G. Li, L. Zhang and Y. Liu, Chem. Sci., 2019, 10, 6565 DOI: 10.1039/C9SC00290A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements