Jump to main content
Jump to site search

Issue 9, 2019
Previous Article Next Article

The chemical reactions in electrosprays of water do not always correspond to those at the pristine air–water interface

Author affiliations

Abstract

The recent application of electrosprays to characterize the air–water interface, along with the reports on dramatically accelerated chemical reactions in aqueous electrosprays, have sparked a broad interest. Herein, we report on complementary laboratory and in silico experiments tracking the oligomerization of isoprene, an important biogenic gas, in electrosprays and isoprene–water emulsions to differentiate the contributions of interfacial effects from those of high voltages leading to charge-separation and concentration of reactants in the electrosprays. To this end, we employed electrospray ionization mass spectrometry, proton nuclear magnetic resonance, ab initio calculations and molecular dynamics simulations. We found that the oligomerization of isoprene in aqueous electrosprays involved minimally hydrated and highly reactive hydronium ions. Those conditions, however, are non-existent at pristine air–water interfaces and oil–water emulsions under normal temperature and pressure. Thus, electrosprays should be complemented with surface-specific platforms and theoretical methods to reliably investigate chemistries at the pristine air–water interface.

Graphical abstract: The chemical reactions in electrosprays of water do not always correspond to those at the pristine air–water interface

Back to tab navigation

Supplementary files

Publication details

The article was received on 11 Dec 2018, accepted on 21 Dec 2018 and first published on 21 Dec 2018


Article type: Edge Article
DOI: 10.1039/C8SC05538F
Chem. Sci., 2019,10, 2566-2577
  • Open access: Creative Commons BY license
  •   Request permissions

    The chemical reactions in electrosprays of water do not always correspond to those at the pristine air–water interface

    A. Gallo, A. S. F. Farinha, M. Dinis, A. Emwas, A. Santana, R. J. Nielsen, W. A. Goddard and H. Mishra, Chem. Sci., 2019, 10, 2566
    DOI: 10.1039/C8SC05538F

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements