Jump to main content
Jump to site search

Issue 16, 2019
Previous Article Next Article

A robust ALD-protected silicon-based hybrid photoelectrode for hydrogen evolution under aqueous conditions

Author affiliations

Abstract

Hydrogen production through direct sunlight-driven water splitting in photo-electrochemical cells (PECs) is a promising solution for energy sourcing. PECs need to fulfill three criteria: sustainability, cost-effectiveness and stability. Here we report an efficient and stable photocathode platform for H2 evolution based on Earth-abundant elements. A p-type silicon surface was protected by atomic layer deposition (ALD) with a 15 nm TiO2 layer, on top of which a 300 nm mesoporous TiO2 layer was spin-coated. The cobalt diimine–dioxime molecular catalyst was covalently grafted onto TiO2 through phosphonate anchors and an additional 0.2 nm ALD-TiO2 layer was applied for stabilization. This assembly catalyzes water reduction into H2 in phosphate buffer (pH 7) with an onset potential of +0.47 V vs. RHE. The resulting current density is −1.3 ± 0.1 mA cm−2 at 0 V vs. RHE under AM 1.5 solar irradiation, corresponding to a turnover number of 260 per hour of operation and a turnover frequency of 0.071 s−1.

Graphical abstract: A robust ALD-protected silicon-based hybrid photoelectrode for hydrogen evolution under aqueous conditions

Back to tab navigation

Supplementary files

Publication details

The article was received on 09 Nov 2018, accepted on 11 Mar 2019 and first published on 12 Mar 2019


Article type: Edge Article
DOI: 10.1039/C8SC05006F
Citation: Chem. Sci., 2019,10, 4469-4475
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    A robust ALD-protected silicon-based hybrid photoelectrode for hydrogen evolution under aqueous conditions

    S. Chandrasekaran, N. Kaeffer, L. Cagnon, D. Aldakov, J. Fize, G. Nonglaton, F. Baleras, P. Mailley and V. Artero, Chem. Sci., 2019, 10, 4469
    DOI: 10.1039/C8SC05006F

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements