Jump to main content
Jump to site search


Three to tango requires a site-specific substitution: heterotrimetallic molecular precursors for high-voltage rechargeable batteries

Author affiliations

Abstract

Design of heterotrimetallic molecules, especially those containing at least two different metals with close atomic numbers, radii, and the same coordination number/environment is a challenging task. This quest is greatly facilitated by having a heterobimetallic parent molecule that features multiple metal sites with only some of those displaying substitutional flexibility. Recently, a unique heterobimetallic complex LiMn2(thd)5 (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate) has been introduced as a single-source precursor for the preparation of a popular spinel cathode material, LiMn2O4. Theoretical calculations convincingly predict that in the above trinuclear molecule only one of the Mn sites is sufficiently flexible to be substituted with another 3d transition metal. Following those predictions, two heterotrimetallic complexes, LiMn2−xCox(thd)5 (x = 1 (1a) and 0.5 (1b)), that represent full and partial substitution, respectively, of Co for Mn in the parent molecule, have been synthesized. X-ray structural elucidation clearly showed that only one transition metal position in the trinuclear molecule contains Co, while the other site remains fully occupied by Mn. A number of techniques have been employed for deciphering the structure and composition of heterotrimetallic compounds. Synchrotron resonant diffraction experiments unambiguously assigned 3d transition metal positions as well as provided a precise “site-specific Mn/Co elemental analysis” in a single crystal, even in an extremely difficult case of severely disordered structure formed by the superposition of two enantiomers. DART mass spectrometry and magnetic measurements clearly confirmed the presence of heterotrimetallic species LiMnCo(thd)5 rather than a statistical mixture of two heterobimetallic LiMn2(thd)5 and LiCo2(thd)5 molecules. Heterometallic precursors 1a and 1b were found to exhibit a clean decomposition yielding phase-pure LiMnCoO4 and LiMn1.5Co0.5O4 spinels, respectively, at the relatively low temperature of 400 °C. The latter oxide represents an important “5V spinel” cathode material for the lithium ion batteries. Transmission electron microscopy confirmed a homogeneous distribution of transition metals in quaternary oxides obtained by pyrolysis of single-source precursors.

Graphical abstract: Three to tango requires a site-specific substitution: heterotrimetallic molecular precursors for high-voltage rechargeable batteries

Back to tab navigation

Supplementary files

Publication details

The article was received on 27 Aug 2018, accepted on 15 Oct 2018 and first published on 16 Oct 2018


Article type: Edge Article
DOI: 10.1039/C8SC03816C
Citation: Chem. Sci., 2019, Advance Article
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Three to tango requires a site-specific substitution: heterotrimetallic molecular precursors for high-voltage rechargeable batteries

    H. Han, Z. Wei, A. S. Filatov, J. C. Carozza, M. Alkan, A. Yu. Rogachev, A. Shevtsov, Artem M. Abakumov, C. Pak, M. Shatruk, Y. Chen and E. V. Dikarev, Chem. Sci., 2019, Advance Article , DOI: 10.1039/C8SC03816C

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements