Jump to main content
Jump to site search


Self-assembled M12L24 nanospheres as a reaction vessel to facilitate a dinuclear Cu(I) catalyzed cyclization reaction

Author affiliations

Abstract

The application of large M12L24 nanospheres allows the pre-concentration of catalysts to reach high local concentrations, facilitating reactions that proceed through dinuclear mechanisms. The mechanism of the copper(I)-catalyzed cyclization of 4-pentynoic acid has been elucidated by means of a detailed mechanistic study. The kinetics of the reaction show a higher order in copper, indicating the formation of a bis-Cu intermediate as the key rate determining step of the reaction. This intermediate was further identified during catalysis by CIS-HRMS analysis of the reaction mixture. Based on the mechanistic findings, an M12L24 nanosphere was applied that can bind up to 12 copper catalysts by hydrogen bonding. This pre-organization of copper catalysts in the nanosphere results in a high local concentration of copper leading to higher reaction rates and turnover numbers as the dinuclear pathway is favored.

Graphical abstract: Self-assembled M12L24 nanospheres as a reaction vessel to facilitate a dinuclear Cu(i) catalyzed cyclization reaction

Back to tab navigation

Supplementary files

Publication details

The article was received on 22 Aug 2018, accepted on 12 Nov 2018 and first published on 13 Nov 2018


Article type: Edge Article
DOI: 10.1039/C8SC03767A
Citation: Chem. Sci., 2019, Advance Article
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Self-assembled M12L24 nanospheres as a reaction vessel to facilitate a dinuclear Cu(I) catalyzed cyclization reaction

    S. Gonell, X. Caumes, N. Orth, I. Ivanović-Burmazović and Joost. N. H. Reek, Chem. Sci., 2019, Advance Article , DOI: 10.1039/C8SC03767A

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements