Jump to main content
Jump to site search

Issue 56, 2019
Previous Article Next Article

High-yielding Pd2(dba)3·C6H6-based four-fold Sonogashira coupling with selenophene-conjugated magnesium tetraethynylporphyrin for organic solar cells

Author affiliations

Abstract

A catalytic system using Pd2(dba)3·(C6H6)/PPh3/CuI for Sonogashira coupling was demonstrated to synthesize a selenophene-conjugated magnesium tetraethynylporphyrin Mg-TEP-(Se-DPP)4 (2a). The catalytic system enabled four-fold cross-coupling of the four terminal alkynes of magnesium tetraethynylporphyrin with bromoselenophene-tethered diketopyrrolopyrroles (DPPs) to produce the desired star-shaped 2a in 80% yield. This molecule shows higher solubility in organic solvents, more efficient visible and near-infrared region absorption, and a narrower band gap compared with reference thiophene-conjugated congeners. Two strategies, namely, selenium substitution and end-capping, were investigated to optimize bulk heterojunction structures in the active layers of organic solar cells. The optimized device based on 2a:PC61BM exhibited the highest PCE of 6.09% among the tested devices after solvent vapor annealing, owing to efficient exciton dissociation, balanced carrier mobility, and suppressed carrier recombination in the film's ordered morphology.

Graphical abstract: High-yielding Pd2(dba)3·C6H6-based four-fold Sonogashira coupling with selenophene-conjugated magnesium tetraethynylporphyrin for organic solar cells

Back to tab navigation

Supplementary files

Publication details

The article was received on 14 Sep 2019, accepted on 25 Sep 2019 and first published on 11 Oct 2019


Article type: Paper
DOI: 10.1039/C9RA07393K
RSC Adv., 2019,9, 32562-32572
  • Open access: Creative Commons BY license
  •   Request permissions

    High-yielding Pd2(dba)3·C6H6-based four-fold Sonogashira coupling with selenophene-conjugated magnesium tetraethynylporphyrin for organic solar cells

    H. Wang, T. Nakagawa, M. Zhang, K. Ogumi, S. Yang and Y. Matsuo, RSC Adv., 2019, 9, 32562
    DOI: 10.1039/C9RA07393K

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements