Issue 64, 2019

Theoretical investigation of various aspects of two dimensional holey boroxine, B3O3

Abstract

By means of first-principles calculations, we study the structural, electronic and mechanical properties of the newly synthesized boron–oxygen holey framework (Chem. Comm. 2018, 54, 3971). It has a planar structure formed by B3O3 hexagons, which are joined via strong covalent boron–boron bonds. The six B3O3 units are connected with six-fold symmetry exhibiting a large hole with a surface area of 23 Å2, which is ideal for the adsorption of alkalis. For neutral alkalis, we found that the adsorption energy of potassium is 14 and 12 kcal mol−1 larger than those determined for sodium and lithium, respectively. In contrast, for alkali cations, there is a clear preference for lithium over sodium and potassium. With regard to its electronic properties, it is an insulator with an electronic band gap of 5.3 eV, at the HSE level of theory. We further investigate the effect of strain on the band gap and find it a less efficient technique to tune the electronic properties. The wide optical gap of B3O3 can be utilized in ultraviolet (UV) applications, such as UV photodetectors, etc. Additionally, the 2D elastic modulus of B3O3 (53.9 N m−1) is larger than that of Be3N2, silicene, and germanene. Besides, we also report bilayer and graphite-like bulk B3O3 and furthermore, find that the optoelectronic properties of the bilayer can be tuned with an external electric field. The great tunability of optical properties from UV to the visible range offers a vast range of applications in optoelectronics.

Graphical abstract: Theoretical investigation of various aspects of two dimensional holey boroxine, B3O3

Supplementary files

Article information

Article type
Paper
Submitted
12 Sep 2019
Accepted
10 Nov 2019
First published
18 Nov 2019
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2019,9, 37526-37536

Theoretical investigation of various aspects of two dimensional holey boroxine, B3O3

S. Ullah, P. A. Denis and F. Sato, RSC Adv., 2019, 9, 37526 DOI: 10.1039/C9RA07338H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements