Issue 24, 2019, Issue in Progress

RuxSe@MoS2 hybrid as a highly efficient electrocatalyst toward hydrogen evolution reaction

Abstract

Alkaline hydrogen evolution reaction (HER) requires highly efficient and stable catalytic materials, the engineering of which needs overall consideration of the water dissociation process as well as the intermediate hydrogen adsorption process. Herein, a RuxSe@MoS2 hybrid catalyst was synthesized by the decoration of MoS2 with RuxSe nanoparticles through a two-step hydrothermal reaction. Due to the bifunctionality mechanism in which Ru promotes the water dissociation and the nearby Se atoms, unsaturated Mo and/or S atoms act as active sites for the intermediate hydrogen adsorption, the hybrid catalyst exhibits an exceptional HER performance in basic media with a rather low overpotential of 45 mV at a current density of 10 mA cm−2 and a small Tafel slope of 42.9 mV dec−1. The synergetic effect between RuxSe and MoS2 not only enables more catalytically active sites, but also increases the inherent conductivity of the hybrid catalyst, leading to more favorable HER kinetics under both alkaline and acidic conditions. As a result, RuxSe@MoS2 also demonstrates an enhanced catalytic activity toward HER in 0.5 M H2SO4 in comparison with pure RuxSe and MoS2, which requires an overpotential of 120 mV to deliver a 10 mA cm−2 current density and gives a Tafel slope of 72.2 mV dec−1. In addition, the hybrid electrocatalyst also exhibits superior electrochemical stability during the long-term HER process in both acidic media and alkaline media.

Graphical abstract: RuxSe@MoS2 hybrid as a highly efficient electrocatalyst toward hydrogen evolution reaction

Supplementary files

Article information

Article type
Paper
Submitted
16 Apr 2019
Accepted
25 Apr 2019
First published
01 May 2019
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2019,9, 13486-13493

RuxSe@MoS2 hybrid as a highly efficient electrocatalyst toward hydrogen evolution reaction

Q. Chen, K. Wang, J. Qin, S. Wang, W. Wei, J. Wang, Q. Shen, P. Qu and D. Liu, RSC Adv., 2019, 9, 13486 DOI: 10.1039/C9RA02873K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements