Issue 22, 2019, Issue in Progress

Transport property of ligand-driven light-induced spin-change Fe-based spin crossover complexes

Abstract

The Fe-based spin-crossover (SCO) complexes, especially the ligand-driven light-induced spin-change (LD-LISC) systems with high spin-transition temperature, are considered as the most promising building blocks for designing molecular spintronic devices due to their bistability between the high-spin (HS) and low-spin (LS) states. Here, we explore the transport properties of Fe(stpy)4(NCS)2 LD-LISC SCO complexes with the trans and cis configurations sandwiched between Au electrodes by performing extensive density functional theory calculations combined with the non-equilibrium Green's function method. As for the trans configuration, the current through the molecular junction with the HS state is significantly larger than that of the LS state, which indicates that this Fe-based LD-LISC SCO complex with the trans configuration could act as a molecular switch when the spin transition is triggered by external stimuli. Remarkably, we observe the nearly perfect spin-filtering effect and obvious negative differential resistance feature in the Fe(stpy)4(NCX)2 junctions with the trans and cis configurations, which is attributed by the dramatically different electronic structures of two spin channels and the bias-dependent transmission spectra, respectively. These obtained theoretical findings suggest that the examined Fe-based LD-LISC SCO complexes hold great potential in molecular spintronics.

Graphical abstract: Transport property of ligand-driven light-induced spin-change Fe-based spin crossover complexes

Supplementary files

Article information

Article type
Paper
Submitted
25 Feb 2019
Accepted
15 Apr 2019
First published
23 Apr 2019
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2019,9, 12339-12345

Transport property of ligand-driven light-induced spin-change Fe-based spin crossover complexes

F. Li, J. Huang, Y. Hu and Q. Li, RSC Adv., 2019, 9, 12339 DOI: 10.1039/C9RA01420A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements