Jump to main content
Jump to site search

Selective hydrogenation of CO2 over a Ce promoted Cu-based catalyst confined by SBA-15


The chemical transformation of CO2 not only mitigates the CO2 released into the atmosphere but also produces fuels and chemicals with important additional value. The activation of stable CO2 molecules is the key difficulty for the efficient conversion of CO2. Herein, we designed a ternary catalyst containing Cu, ZnO, and CeOx and dispersed them in SBA-15 using incipient wetness impregnation. Interestingly, the catalytic performances were improved greatly when the related active components were dispersed inside and outside the pore channels of SBA-15 using incipient wetness impregnation method. Methanol and CO were controllably produced on the interface of Cu and metal oxides (ZnO and CeOx) due to the synergistic effects between three active components. The metal oxides play a more important role in CO2 conversion as well as the products selectivity compared with the situation of Cu. CeO2 is more efficient than ZnO in promoting the dispersion of Cu nanoparticles and methanol generation. The proper pore channels of SBA-15 promote the mass transfer and heat transfer while the high specific surface area is favorable to the dispersion of active components, which will facilitate the production of methanol and CO. After continuous hydrogenation evaluation for 100 h, the catalytic performance of the catalyst was still very stable. This work provides a viable strategy to prepare the supported catalyst with the highly dispersed active sites, and the catalyst exhibits an efficient catalytic effect on producing methanol and CO.

Back to tab navigation

Supplementary files

Publication details

The article was received on 10 Apr 2019, accepted on 15 May 2019 and first published on 17 May 2019

Article type: Research Article
DOI: 10.1039/C9QI00397E
Inorg. Chem. Front., 2019, Accepted Manuscript

  •   Request permissions

    Selective hydrogenation of CO2 over a Ce promoted Cu-based catalyst confined by SBA-15

    X. Hu, C. Zhao, Q. Guan, X. Hu, W. Li and J. Chen, Inorg. Chem. Front., 2019, Accepted Manuscript , DOI: 10.1039/C9QI00397E

Search articles by author