Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 2, 2020
Previous Article Next Article

Conjugated electrochromic polymers with amide-containing side chains enabling aqueous electrolyte compatibility

Author affiliations

Abstract

Conjugated polymers based on poly(3,4-propylenedioxythiophene) (PProDOT) backbones are widely studied for electrochromics, due to their favourable redox properties including enhanced optical contrast and fast switching kinetics in nonaqueous electrolytes. The usual hydrophobic nature of these polymers renders them redox-inactive when interfaced with aqueous salt solutions. This work illustrates an effective side chain modification approach where polar amide functional groups are incorporated into the polymer side chains to attain redox switching in aqueous electrolytes while maintaining a high contrast. The impact of substitutional modifications (in terms of primary and secondary amide groups) on the interaction with hydrated and non-hydrated ions is studied using electrochemical and spectroscopic techniques to elucidate the underlying mechanisms leading to redox activity in aqueous electrolytes. The presence of amide groups is beneficial in terms of reducing the oxidation onset potential, making them attractive candidates for electrochromics in both nonaqueous and aqueous electrolytes.

Graphical abstract: Conjugated electrochromic polymers with amide-containing side chains enabling aqueous electrolyte compatibility

Back to tab navigation

Supplementary files

Article information


Submitted
19 Jul 2019
Accepted
01 Oct 2019
First published
17 Oct 2019

Polym. Chem., 2020,11, 508-516
Article type
Paper

Conjugated electrochromic polymers with amide-containing side chains enabling aqueous electrolyte compatibility

K. Perera, Z. Yi, L. You, Z. Ke and J. Mei, Polym. Chem., 2020, 11, 508
DOI: 10.1039/C9PY01066A

Social activity

Search articles by author

Spotlight

Advertisements