Jump to main content
Jump to site search


3D printable non-isocyanate polyurethanes with tunable material properties

Author affiliations

Abstract

Green chemistry-based non-isocyanate polyurethanes (NIPU) are synthesized and 3D-printed via rapid, projection photopolymerization into compliant mechanisms of 3D structure with spatially-localized material properties. Trimethylolpropane allyl ether-cyclic carbonate is used to couple the unique properties of two types of reaction chemistry: (1) primary diamine-cyclic carbonate ring-opening conjugation for supplanting conventional isocyanate-polyol reactions in creating urethane groups, with the additional advantage of enabling modular segment interchangeability within the diurethane prepolymers; and (2) thiol–ene (click) conjugation for non-telechelic, low monodispersity, quasi-crystalline-capable, and alternating step-growth co-photopolymerization. Fourier transform infrared spectroscopy is used to monitor the functional group transformation in reactions, and to confirm these process-associated molecular products. The extent of how these processes utilize molecular tunability to affect material properties were investigated through measurement-based comparison of the various polymer compositions: frequency-related dynamic mechanical analysis, tension-related elastic-deformation mechanical analysis, and material swelling analysis. Stained murine myoblasts cultured on NIPU slabs were evaluated via fluorescent microscopy for “green-chemistry” affects on cytocompatibility and cell adhesion to assess potential biofouling resistance. 3D multi-material structures with micro-features were printed, thus demonstrating the capability to spatially pattern different NIPU materials in a controlled manner and build compliant mechanisms.

Graphical abstract: 3D printable non-isocyanate polyurethanes with tunable material properties

Back to tab navigation

Supplementary files

Publication details

The article was received on 06 Jul 2019, accepted on 16 Jul 2019 and first published on 19 Jul 2019


Article type: Paper
DOI: 10.1039/C9PY00999J
Polym. Chem., 2019, Advance Article

  •   Request permissions

    3D printable non-isocyanate polyurethanes with tunable material properties

    J. J. Warner, P. Wang, W. M. Mellor, H. H. Hwang, J. H. Park, S. Pyo and S. Chen, Polym. Chem., 2019, Advance Article , DOI: 10.1039/C9PY00999J

Search articles by author

Spotlight

Advertisements