Recent advances in the polymerization of elemental sulphur, inverse vulcanization and methods to obtain functional Chalcogenide Hybrid Inorganic/Organic Polymers (CHIPs)
Abstract
Recent developments in the polymerization of elemental sulfur and the preparation of functional Chalcogenide Hybrid Inorganic/Organic Polymers (CHIPs) are reviewed. CHIPs represent a class of polymers synthesized from elemental sulfur with the incorporation of inorganic chalcogenide components (S, Se, Te) into the organic polymeric backbones. Novel CHIP materials exhibit interesting optical, electrochemical and mechanical properties that lead to applications in thermal imaging, energy storage, self-healable materials and separation science. The emphasis of this review is on the key advances in the synthetic approaches to prepare functional polymeric sulfur-rich materials, with recent developments in synthesis, characterization, and application milestones being highlighted.