Jump to main content
Jump to site search


Quinoline based fluorescent probe for selective detection and real-time monitoring of Copper ions- A differential colorimetric approach.

Abstract

A quinoline moiety was used as a building block for designing a probe for the selective detection of copper ions in a partially aqueous medium. We have developed a molecular sensing system which gives insight to the complex physiological and redox aspects of labile copper. The probe provides a colorimetric approach for distinguishing cuprous and cupric ions along with their simultaneous discrimination from other metal ions in the visible range of the spectrum. The chemosensor showed a remarkable fluorescence enhancement along with the significant bathochromic shift of about 35 nm. The detection limit of the probe was found to be 1.03 µM which is optimally favorable to be applied in real time monitoring. Fabrication of paper strips with the probe was done to detect the presence of cuprous ions in the real sample. The value of binding constant (1.37×104 M-1) suggests the stable complex formation between the metal ion and the sensing probe. The photoluminescence and structural aspects of the chemosensor was characterized by using fluorescence, absorption, ESI-MS, and 1HNMR spectroscopy. Furthermore, the cytotoxic nature and bioimaging property of the probe was interpreted in vitro on RAW 264.7 macrophages cell lines and peripheral blood mononuclear cells (PBMC’s) respectively.

Back to tab navigation

Supplementary files

Publication details

The article was received on 30 May 2019, accepted on 26 Sep 2019 and first published on 27 Sep 2019


Article type: Paper
DOI: 10.1039/C9PP00247B
Photochem. Photobiol. Sci., 2019, Accepted Manuscript

  •   Request permissions

    Quinoline based fluorescent probe for selective detection and real-time monitoring of Copper ions- A differential colorimetric approach.

    A. Farhi, F. Firdaus, H. Saeed, A. Mujeeb, M. Shakir and M. Owais, Photochem. Photobiol. Sci., 2019, Accepted Manuscript , DOI: 10.1039/C9PP00247B

Search articles by author

Spotlight

Advertisements