Jump to main content
Jump to site search


Unexpected Surfactant Role of Immiscible Nitrogen in the Structural Development of Silver Nanoparticles: An Experimental and Numerical Investigation

Abstract

Artificially designing the crystal orientation and face of noble metal nanoparticles is important to realizing unique chemical and physical features that are very different from those of noble metals in bulk geometries. However, relative to their counterparts synthesized in wet-chemical processes, vapor-depositing noble metal nanoparticles with the desired crystallographic features while avoiding any notable impurities is quite challenging because this task requires breaking away from the thermodynamically favorable geometry of nanoparticles. We used plasma-generated N atoms as a surface-active agent, a so-called surfactant, to control the structural development of Ag nanoparticles supported on a chemically heterogeneous ZnO substrate. The N-surfactant-facilitated sputter deposition provided strong selectivity for the crystalline orientation and facet, leading to a highly flattened nanoparticle shape that clearly deviated from the energetically favorable spherical polyhedrons, due to drastic decreases in the surface free energies of Ag nanoparticles in the presence of the N surfactant. The Ag nanoparticles successively developed a nearly unidirectional (111) orientation aligned by stimulating the crystalline coupling of Ag along the orientation of the ZnO substrate. The experimental and simulation results not only offer new insights into the advantages of N as a surfactant for the orientation and shape-controlled synthesis of Ag nanoparticles via sputter deposition but also provide the first time solid evidence validating that immiscible, nonresidual gaseous surfactants can be used in the vapor deposition processes of noble metal nanoparticles to manipulate their surface free energies.

Back to tab navigation

Supplementary files

Publication details

The article was received on 19 Sep 2019, accepted on 02 Dec 2019 and first published on 04 Dec 2019


Article type: Paper
DOI: 10.1039/C9NR08076G
Nanoscale, 2019, Accepted Manuscript

  •   Request permissions

    Unexpected Surfactant Role of Immiscible Nitrogen in the Structural Development of Silver Nanoparticles: An Experimental and Numerical Investigation

    J. Yun, H. Chung, S. Lee, J. S. Bae, T. E. Hong, K. Takahashi, S. M. Yu, J. Park, Q. Guo, G. Lee, S. Z. Han, Y. Ikoma and E. Choi, Nanoscale, 2019, Accepted Manuscript , DOI: 10.1039/C9NR08076G

Search articles by author

Spotlight

Advertisements