Jump to main content
Jump to site search

Multi-gate Memristive Synapses Realized with Lateral Heterostructure of 2D WSe2 and WO3


Development of novel synaptic device architectures with a high order of synaptic plasticity can provide a breakthrough toward neuromorphic computing. Herein, through the thermal oxidation of two-dimensional (2D) WSe2, unique memristive synapses based on the lateral heterostructure of 2D WSe2 and WO3, with multi-gate modulation characteristic, are firstly demonstrated. An intermediate transition layer in the heterostructure is observed through transmission electron microscopy. Raman spectroscopy and detailed electrical measurements provide insights into the mechanism of the memristive behavior, revealing that protons injected into/removed from the intermediate transition layer account for the memristive behavior. This novel memristive synapse can be used to emulate two neuron-based synaptic functions, like post-synaptic current, short-term plasticity and long-term plasticity, with remarkable linearity, symmetry, and ultralow energy consumption of 2.7 pJ per spike. More importantly, the synaptic plasticity between the drain and source electrodes can be effectively modulated by the gate voltage and the visible light in a four-terminal configuration. Such multi-gate tuning of the synaptic plasticity cannot be accomplished by any previously reported multi-gate synaptic devices that only mimic two neuron-based synapses. This new synaptic architecture with the electrical and optical modulation enables a realistic emulation of biological synapses whose synaptic plasticity can be additionally regulated by surrounding astrocytes, greatly improving the recognizing accuracy and processing capacity of artificial neuristors, and paving a new way for highly efficient neuromorphic computation devices.

Back to tab navigation

Supplementary files

Publication details

The article was received on 16 Sep 2019, accepted on 22 Nov 2019 and first published on 25 Nov 2019

Article type: Paper
DOI: 10.1039/C9NR07941F
Nanoscale, 2019, Accepted Manuscript

  •   Request permissions

    Multi-gate Memristive Synapses Realized with Lateral Heterostructure of 2D WSe2 and WO3

    X. Guo, H. He, R. Yang, H. Huang, F. Yang, Y. Wu and J. Shaibo, Nanoscale, 2019, Accepted Manuscript , DOI: 10.1039/C9NR07941F

Search articles by author