Jump to main content
Jump to site search


Intrinsic Ferromagnetism and Valley Polarization in Hydrogenated Group V Transition-metal Dinitride (MN2H2, M = V/Nb/Ta) Nanosheets: Insights from First-principles

Abstract

Due to the extraordinary electronic and magnetic properties, transition-metal dinitrides (TMDNs) and their derivatives are the rising stars in low-dimensional layered materials. In this work, through first-principles calculations, we have comprehensively investigated the structural and electronic properties of hydrogenated group V TMDN nanosheets. We find that the surface hydrogenation can well stabilize the H-, T- and M-phase structures of group V TMDNs, for which the formed MN2H2 nanosheets have robust energetic, dynamical and thermal stabilities. Different from the pristine MN2 systems, the H-phase one becomes the most favorable structure of MN2H2 nanosheets. Intrinsic ferromagnetism is present in these H-MN2H2 nanosheets, which even exhibit bipolar magnetic semiconducting behaviors. More interestingly, large spontaneous valley polarization occurs in the H-MN2H2 nanosheets, which is attributed to the coexistence of remarkable spin-orbit coupling and magnetic exchange interactions according to the kp model analysis. Among them, the H-NbN2H2 one is revealed as a promising ferrovalley material, whose valley polarization value reaches as large as 0.11 eV and the Curie temperature is up to 225 K. Besides that, versatile electronic properties are obtained in the T- and M-phase structures of MN2H2 nanosheets, which will be magnetic/nonmagnetic metals/semiconductors depending on the metal species and phase structures. Our study demonstrates that the hydrogenation can bring robust structural stabilities and unconventional electronic properties into the group V TMDN nanosheets, which enable them many potential applications in spintronics and valleytronics.

Back to tab navigation

Supplementary files

Publication details

The article was received on 10 Sep 2019, accepted on 24 Nov 2019 and first published on 25 Nov 2019


Article type: Paper
DOI: 10.1039/C9NR07793F
Nanoscale, 2019, Accepted Manuscript

  •   Request permissions

    Intrinsic Ferromagnetism and Valley Polarization in Hydrogenated Group V Transition-metal Dinitride (MN2H2, M = V/Nb/Ta) Nanosheets: Insights from First-principles

    Y. Ding and Y. Wang, Nanoscale, 2019, Accepted Manuscript , DOI: 10.1039/C9NR07793F

Search articles by author

Spotlight

Advertisements