Jump to main content
Jump to site search


Metal single-atom coordinated graphitic carbon nitride as an efficient catalyst for CO oxidation

Abstract

Single-atom catalysts (SACs) often present outstanding activity due to their high ratio of low-coordinated metal atoms and can be applied to the activation of strong chemical bonds like C≡O. Herein, we investigate the potential usage of a single-atom catalyst, in which isolated cobalt atoms supported on a porous graphitic carbon nitride (Co/g-C3N4), for CO oxidation. Based on the adsorption/co-adsorption energies of O2, CO, 2O2, CO+O2 and 2CO, the screening criteria and the reaction mechanisms of CO oxidation, including Eley–Rideal, New Eley–Rideal, Langmuir–Hinshelwood, and termolecular Eley–Rideal, are established and compared. In particular, the energy barriers of the rate-limiting steps for CO oxidation process by all possible reaction pathways are in a range from 0.21 to 0.59 eV, suggesting that the Co/g-C3N4 catalyst can boost CO oxidation at low temperature. Moreover, the preparation of the SAC (Co/g-C3N4) by using CoCl2 as an appropriate metal precursor and the stability (up to 600 K) are evaluated by ab initio molecular dynamics simulations. The high stability and excellent activity of Co/g-C3N4 SAC for CO oxidation, offer a high possibility for clean energy production.

Back to tab navigation

Supplementary files

Publication details

The article was received on 07 Sep 2019, accepted on 14 Nov 2019 and first published on 15 Nov 2019


Article type: Paper
DOI: 10.1039/C9NR07726J
Nanoscale, 2019, Accepted Manuscript

  •   Request permissions

    Metal single-atom coordinated graphitic carbon nitride as an efficient catalyst for CO oxidation

    S. Wang, J. Li, Q. Li, X. Bai and J. Wang, Nanoscale, 2019, Accepted Manuscript , DOI: 10.1039/C9NR07726J

Search articles by author

Spotlight

Advertisements