Jump to main content
Jump to site search


Ultra stable superatomic structure of doubly magic Ga13 and Ga13Li electrolyte

Abstract

We report the extreme thermal stability of the superatomic electronic structure for 13-atom gallium clusters and the Ga13Li electrolyte. Using previously-validated first-principles simulations,[K. G. Steenbergen and N. Gaston, Phys. Rev. B, 2013, 88, 161402–5] we show that the superatomic shell progression of doubly-magic Ga13- remains stable up to 1000 K, making this cluster an ideal candidate for high-temperature applications requiring an exceptionally stable electronic structure. Using the neutral and cationic clusters for comparison, we quantify the extent to which cluster stability (geometric and electronic) is modified through addition or subtraction of a single electron. Finally, combining 13-atom gallium with lithium, we illustrate that this superatomic closed-shell Ga13Li exhibits the same anomalously high thermal stability as naked Ga13-. For technological use as a superatomic electrolyte, we demonstrate that Ga13Li has a low affinity to water as well as a low Li+ binding energy.

Back to tab navigation

Supplementary files

Publication details

The article was received on 13 Aug 2019, accepted on 03 Dec 2019 and first published on 03 Dec 2019


Article type: Paper
DOI: 10.1039/C9NR06959C
Nanoscale, 2019, Accepted Manuscript

  •   Request permissions

    Ultra stable superatomic structure of doubly magic Ga13 and Ga13Li electrolyte

    K. G. Steenbergen and N. Gaston, Nanoscale, 2019, Accepted Manuscript , DOI: 10.1039/C9NR06959C

Search articles by author

Spotlight

Advertisements