Jump to main content
Jump to site search

Issue 41, 2019
Previous Article Next Article

Photocatalytic activity of exfoliated graphite–TiO2 nanoparticle composites

Author affiliations


We investigate the photocatalytic performance of composites prepared in a one-step process by liquid-phase exfoliation of graphite in the presence of TiO2 nanoparticles (NPs) at atmospheric pressure and in water, without heating or adding any surfactant, and starting from low-cost commercial reagents. These show enhanced photocatalytic activity, degrading up to 40% more pollutants with respect to the starting TiO2-NPs, in the case of a model dye target, and up to 70% more pollutants in the case of nitrogen oxides. In order to understand the photo-physical mechanisms underlying this enhancement, we investigate the photo-generation of reactive species (trapped holes and electrons) by ultrafast transient absorption spectroscopy. We observe an electron transfer process from TiO2 to the graphite flakes within the first picoseconds of the relaxation dynamics, which causes the decrease of the charge recombination rate, and increases the efficiency of the reactive species photo-production.

Graphical abstract: Photocatalytic activity of exfoliated graphite–TiO2 nanoparticle composites

Back to tab navigation

Article information

07 Aug 2019
22 Sep 2019
First published
18 Oct 2019

Nanoscale, 2019,11, 19301-19314
Article type

Photocatalytic activity of exfoliated graphite–TiO2 nanoparticle composites

G. Guidetti, E. A. A. Pogna, L. Lombardi, F. Tomarchio, I. Polishchuk, R. R. M. Joosten, A. Ianiro, G. Soavi, N. A. J. M. Sommerdijk, H. Friedrich, B. Pokroy, A. K. Ott, M. Goisis, F. Zerbetto, G. Falini, M. Calvaresi, A. C. Ferrari, G. Cerullo and M. Montalti, Nanoscale, 2019, 11, 19301
DOI: 10.1039/C9NR06760D

Social activity

Search articles by author