Jump to main content
Jump to site search

Modulated thermal conductivity of 2D hexagonal boron arsenide: Emerged strain-induced study


Ongoing prediction and synthesis of two-dimensional materials take remarkable attentions to engineer high performance intended devices. Through this, comprehensive and detailed uncovering of the material properties could accelerate to get to this aim. Hexagonal boron arsenide (h-BAs), a graphene counterpart, is among the most attractive 2D semiconductors. In this work, our objective is to explore the mechanical, electronic, and thermal properties of h-BAs. We found that this novel 2D material can show a high elastic modulus of 260 GPa, which is independent of the loading direction. We also observed that this system shows a direct and narrow band-gap of 1.0 eV, which is highly desirable for electronic applications. The focus of our investigation is to concern the in-depth understanding of the thermal transport along the monolayer h-BAs and further tuning the thermal conductivity by strain engineering. In this regard, the thermal conductivity of stress-free and pristine monolayer was predicted to be 180.2 W/mK, which can be substantially enhanced to 375.0 W/mK and 406.2 W/mK, with only 3% straining along the armchair and zigzag directions, respectively. The underlying mechanism for such a remarkable boosting of thermal conductivity in h-BAs was correlated to the fact that stretching makes the flexural out-plane mode as the dominant heat carrier. Our results not only improve the understanding concerning the heat transfer in h-BAs nanosheets but also offer possible new routes to drastically improve the thermal conductivity, which can play critical roles for the thermal management systems.

Back to tab navigation

Supplementary files

Publication details

The article was received on 23 Jul 2019, accepted on 08 Oct 2019 and first published on 10 Oct 2019

Article type: Paper
DOI: 10.1039/C9NR06283A
Nanoscale, 2019, Accepted Manuscript

  •   Request permissions

    Modulated thermal conductivity of 2D hexagonal boron arsenide: Emerged strain-induced study

    M. Raeisi, S. Ahmadi and A. Rajabpour, Nanoscale, 2019, Accepted Manuscript , DOI: 10.1039/C9NR06283A

Search articles by author