Jump to main content
Jump to site search


Interfacial recombination kinetics in aged perovskite solar cells measured using transient photovoltage techniques

Author affiliations

Abstract

The reduction of interfacial charge recombination kinetics in perovskite solar cells is key to increase device photovoltaic efficiencies. Thus, it is necessary to fully understand which are the major carrier losses and, thereafter, how they can be minimized. Transient Photovoltage (TPV) has been widely used to study carrier recombination in solar cells under operando conditions. Interestingly, a novel negative transient deflection appears in perovskite solar cells when carrying out TPV measurements and it has been related to the ionic accumulation at the perovskite interfaces, which is a process that requires great attention to fully understand how perovskite solar cells work. Herein, we moved one step further and continuously monitored the evolution of the negative trace with the aging of the perovskite solar cell. Importantly, we demonstrated that the negative signal changes with aging of the solar cells and such a change can be directly related to the enhancement of the open circuit voltage and fill factor of the devices and thus the solar cell efficiency. We postulate that this increase in efficiency is due to better/faster ion redistribution within the perovskite material.

Graphical abstract: Interfacial recombination kinetics in aged perovskite solar cells measured using transient photovoltage techniques

Back to tab navigation

Supplementary files

Publication details

The article was received on 23 Jul 2019, accepted on 17 Sep 2019 and first published on 18 Sep 2019


Article type: Paper
DOI: 10.1039/C9NR06278E
Nanoscale, 2019, Advance Article

  •   Request permissions

    Interfacial recombination kinetics in aged perovskite solar cells measured using transient photovoltage techniques

    J. Jiménez-López and E. Palomares, Nanoscale, 2019, Advance Article , DOI: 10.1039/C9NR06278E

Search articles by author

Spotlight

Advertisements