Jump to main content
Jump to site search


Novel polymorphic phase of two-dimensional VSe2: the 1T′ structure and its lattice dynamics

Author affiliations

Abstract

Polymorphisms allowing multiple structural phases are among the most fascinating properties of transition metal dichalcogenides (TMDs). Herein, the polymorphic 1T′ phase and its lattice dynamics for bilayer VSe2 grown on epitaxial bilayer graphene are investigated via low temperature scanning tunneling microscopy (STM). The 1T′ structure, mostly observed in group-6 TMDs, is unexpected in VSe2, which is a group-5 TMD. Emergence of the 1T′ structure in bilayer VSe2 suggests the important roles of interface and layer configurations, providing new possibilities regarding the polymorphism of TMDs. Detailed topographical analysis elucidates the microscopic nature of the 1T′ structure, confirming that Se-like and V-like surfaces can be resolved depending on the polarity of the sample bias. In addition, bilayer VSe2 can transit from a static state of the 1T′ phase to a dynamic state consisting of lattice vibrations, triggered by tunneling current from the STM tip. Topography also shows hysteretic behavior during the static–dynamic transition, which is attributed to latent energy existing between the two states. The observed lattice dynamics involve vibrational motion of the Se atoms and the middle V atoms. Our observations will provide important information to establish in-depth understanding of the microscopic nature of 1T′ structures and the polymorphism of two-dimensional TMDs.

Graphical abstract: Novel polymorphic phase of two-dimensional VSe2: the 1T′ structure and its lattice dynamics

Back to tab navigation

Supplementary files

Publication details

The article was received on 17 Jul 2019, accepted on 06 Oct 2019 and first published on 07 Oct 2019


Article type: Paper
DOI: 10.1039/C9NR06076F
Nanoscale, 2019, Advance Article

  •   Request permissions

    Novel polymorphic phase of two-dimensional VSe2: the 1T′ structure and its lattice dynamics

    G. Duvjir, B. K. Choi, T. T. Ly, N. H. Lam, S. Chun, K. Jang, A. Soon, Y. J. Chang and J. Kim, Nanoscale, 2019, Advance Article , DOI: 10.1039/C9NR06076F

Search articles by author

Spotlight

Advertisements