Issue 47, 2019

Biomineralization improves the thermostability of foot-and-mouth disease virus-like particles and the protective immune response induced

Abstract

Virus-like particles (VLPs) are an ideal substitute for traditionally inactivated or attenuated viruses in vaccine production. However, given the properties of their native proteins, the thermal stability of VLPs is poor. In this study, calcium mineralization was used to fabricate foot-and-mouth disease virus (FMDV) VLPs as immunogenic core–shell particles with improved thermal stability. The biomineralized VLPs were stably stored at 24 °C and 37 °C for 13 and 11 days, respectively. Animal experiments showed that the biomineralized VLPs induced specific protective immunogenic effects, even after storage at 37 °C for 7 days. The biomineralized VLPs also effectively activated dendritic cells (DCs) to express high levels of surface MHC-II, costimulatory molecules, and proinflammatory cytokines. The DCs activated by the mineralized VLPs rapidly localized to the secondary lymphoid tissues and promoted the activation of the native T-cell population. These results suggest that the biomineralization of VLPs is an effective approach to vaccine production insofar as the mineralized shell provides an adjuvant effect which improves the immunogenicity of the VLPs. Biomineralization can also confer superior heat resistance on VLPs, an advantage in vaccine production. The successful development of thermally stable, biomineralized VLPs will reduce our dependence on cold storage and delivery.

Graphical abstract: Biomineralization improves the thermostability of foot-and-mouth disease virus-like particles and the protective immune response induced

Supplementary files

Article information

Article type
Paper
Submitted
02 Jul 2019
Accepted
27 Aug 2019
First published
17 Sep 2019

Nanoscale, 2019,11, 22748-22761

Biomineralization improves the thermostability of foot-and-mouth disease virus-like particles and the protective immune response induced

P. Du, R. Liu, S. Sun, H. Dong, R. Zhao, R. Tang, J. Dai, H. Yin, J. Luo, Z. Liu and H. Guo, Nanoscale, 2019, 11, 22748 DOI: 10.1039/C9NR05549E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements